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The flow in a near wake behind a body is one of the most important elements of aerodynamic flow, 
since it greatly influences the overall flow pattern and, as a consequence, the aerodynamic characteristics of 
an aircraft and its elements. The structure of flow in a near wake is complex and depends on many factors 
which involve difficulties in experimental and numerical investigation. A survey of the works on this problem 
can be found, for instance, in [1-3]. 

In the most complete statement separated flows can be studied within the framework of averaged 
Navier-Stokes equations supplemented by a turbulence model. However, the results of numerical experiments 
in gas dynamics show that the problem of selection of a turbulence model currently does not have a satisfactory 
solution. Application of the same turbulence model for all flow types and configurations of flown bodies does 
not provide an adequate flow pattern and acceptable agreement of experimental and theoretical data, so the 
results of application of a certain turbulence model in numerical simulation of particular flows should also be 
considered to be information about the features of this model for determining the region of its applicability 
by subsequent comparison with appropriate experimental data. 

In the present work a turbulent flow of a viscous heat-conducting gas behind a vertical edge of a finite- 
thickness plate is studied numerically within the framework of averaged Navier-Stokes equations supplemented 
by a semi-empirical turbulence model of the q - w type. In the works [4, 5] devoted to the solution of a similar 
problem for an axisymmetrical case under the assumption of flow laminarity it was found, in particular, that 
with the growth of the Reynolds number Re the length of the recirculation zone behind the body increases 
monotonically, and the flow in it is accelerated to the point of appearance of a local supersonic zone. The 
authors of [6, 7], who obtained a similar phenomenon in a numerical experiment, doubt whether it takes place 
in real flows, since at great Re the flow becomes turbulent. The calculations carried out in the present work 
make it possible to determine the Re values (within the accepted turbulence model) at which turbulent flow 
significantly influences gas motion in the near wake, and the character of the influence. 

1. S t a t e m e n t  of  t h e  P r o b l e m .  We consider the stationary flow of a viscous compressible heat- 
conducting gas near the vertical trailing edge of a plate. The flow region (Fig. 1) is bounded by the broken 
line ABCDEF. A no-slip condition and heat insulation regime for temperature are assigned at the plate surface 
EFA. Straight line ED is the symmetry axis. A developed boundary layer is specified at the entry boundary 
AB. The flow is considered homogeneous and parallel to the flank surface of the plate at outer boundary BC. 

As a mathematical  model describing the flows in the region under consideration we used averaged 
Navier-Stokes equations, which in dimensionless form in Cartesian coordinates can be written as follows: 

OU ~ OWj Of 4 
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I is an identi ty matrix;  Bj is a diagonal matrix;  p is the density; ul  and us are the velocity components; T is the 
temperature;  E = T + u ju j /2  is the complete specific energy; p = (3' - 1)pT is the pressure; 7 = cp/cy = 1.4. 

The stress tensor aij and the heat  flow qj are presented in the form 

0.k) 

where sij = Oui/Ox i + Ouj/Oxi; #t is the turbulent  viscosity; k is the turbulent  kinetic energy; Pr = 
0.72; Prt = 0.9. 

The turbulent  viscosity #t is determined by the length scale l and the turbulence rate q = v~:  
#t = #t(q, 1). The values of l and q are found from differential equations 

O (ps'~) + -~xj (pSnuj) = "-~xj ~ee + ~r ,  -~xj ] + H, .  (I.2) 

Here S ,  = S,~(l,q) (n = 1, 2); H ,  = Hn(p, S1,Ss,Oui/Ozj) are the source terms; Prl  = 1; Pr2 = 1.3. To 
close Eqs. (1.1) in the present work we selected a semi-empirical model [8] wi th  two differential equations 
for S1 = q = ~ and Ss = a; = q/l. A similar model was used in [9] in numerical  simulation of flow near 
swept-forward and swept-back ledges. The source terms H,~ in (1.2) have the form 

where 

1 (cufJq/~ ~ 2 H1 = -~ - -~ Dq - qw) p, Hs = [cl (CuJ - ~ Dw) - cza~2] , 

Ouk. ( 2 6 ) Oui 
D = Ox-----s J = sij - ~ ij ~ z j ;  ct = 0.4059 + 0.045; c2 = 0.92; c o = 0.09; 

9 = 1 - exp (-J3RT) ; RT = RePq;  /3 = 0.0018; #t = cugPql. 
#co 

2. N u m e r i c a l  A l g o r i t h m .  The algori thm for numerical solution of Eqs. (1.1) is based on the idea of 
splitting of the stabilizing operator  with respect to physical processes and spatial directions [10]. Replacing 
the area of continuous variation of an argument  by a mesh and determining the values at the mesh nodes we 
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find a finite-difference analog of Eqs. (1.1): 

fn+l _ _  f .  4 
-b Z C~ [olf n:+x Jr-(1 - ( ~ ) f n ]  = F~. 

T j : l  

Here C~ is a finite-difference operator that approximates a differential operator Cj with order O(ht). 
After approximate factorization of the stabilizing operator 

4 4 
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we obtain a system of equations approximating (1.1) in a nondivergent form with order O(r + ht): 

4 f . + l  __ f .  4 
I I  ( i + raC] ) - ~ CJ f"  + F~. 
j----1 7" j = l  

A form of finite-difference equations, that is conservative when a stationary solution is achieved is written as 

4 , cn+ l  _ fn  
I'I (I + raC]) J 
j = l  7" 

or as a scheme in fractional steps: 

~n = -- (A-1 )n  (Wl~)n , 
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This scheme approximates system of Eqs. (1.1) with order O(r  + vh t + h k) in the nonstationary case and 
with order O(h k) in the stationary case. The scheme is conservative in ascertainment and absolutely stable 
at a /> 0.5 for l = k. We used earlier a similar finite-difference scheme to solve stationary Navier-Stokes 
equations by the pseudo-nonstationary method in the simulation of laminar flow in the near wake behind a 
blunt body of small elongation [4]. 

Equations (1.2) for determining turbulent parameters were solved independently of (1.1) after each 
time step using a similar finite-difference scheme. The difference mesh used in the calculations was condensed 
on the flank surface of the plate and on its base. There were 91 nodes (61 of them fall on the plate base) in 
the transverse direction with respect to unperturbed flow in the mesh and 97 nodes (2i of them fall on the 
flank surface of the plate) in the longitudinal direction. 
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3. C a l c u l a t i o n  R e s u l t s .  The calculations were carried out at the following Mach-number values for 
free flow M and Reynolds numbers calculated from the values of the gas-dynamic quantities in homogeneous 
isentropic flow along the plate: 

M = 2.8, 4.0, and 6.0, Re = 2.5. 103-106. 

The plate half-thickness was taken as the length scale. The profiles of the values at the inlet section AB 
(Fig. 1) were given in the form 

p=p~, v = 0 ,  - - =  , T = T e  1 + ~r~r M 2 1 -  , 
tLe 

where subscript e denotes the values in an isentropic flow outside the boundary layer; 6 is the thickness of 
the boundary layer (in our calculations 6 = 1); Ay is the distance to the plate normal. Near the plate surface 
the velocity profile was refined in such a way that the friction coefficient calculated by this profile takes the 
value obtained from the approximate formula 

] (:-:) , O =  --u 1 -  u dy 
\ i f" ] o ue 

(subscript w denotes the values at the plate surface). The turbulent parameters in the inlet section were found 
from the empirical formulas 

6 
0.41,/ y, Y < k = /'1 r, yl  

z =  

0.09vf~-36, y > 0.090.4--- ~,  

?) Pe cf 
U 7- ~ , T ' W  - -  �9 

The effect of the Reynolds number on the length of the separation zone xo/h is shown in Fig. 2. We note 
that at M = 2.8 for Re from the range of approximately from 10 s to 4.105 for the length of the separation zone 
two values are presented in the plot, which correspond to the existence of two different stationary solutions 
of the problem given coinciding governing parameters. The difference between the calculations was that in 
the selection of an initial field, the upper branch of the plot was obtained when an already found stationary 
solution for a small Re was selected as an initial field; the results corresponding to the lower branch of the 
plot were obtained when a stationary solution for a great Re was selected as an initial field. Thus, there is 
a "hysteresis" with respect to the Reynolds number. The point is that in the considered range of governing 
parameters the above procedure of constructing the profiles of the values at the inlet section with the growth 
of Re gives an increase in the coefficient of turbulent viscosity #t, which results in a radical transformation of 
the flow in the near wake, when Re exceeds the critical value. 

For M = 4.0, as one can see from Fig. 2, there is also a duality interval of the solution, and with great 
Re the length of the separation zone decreases sharply. (A circumstance proved by many calculations should 
be noted: whenever data are chosen as initial, the resulting stationary flow always corresponds to the curves 
shown in Fig. 2 and no other solutions appear.) For M = 6.0 no reduction of the separation zone length 
is observed in the considered range of Re. The decrease in the extent of the recirculation zone at great Re 
corresponds to theoretical notions on the increased ejecting action of a flow converging from a plate, which 
cXuses a pressure decrease in the separation zone and thus increases the flow return to the axis. 

Figure 3 shows the average bot tom pressure related to the pressure in an unperturbed flow p/pm. For 
M = 2.8 it increases from 0.504 to 0.577 in the range 2.5.103 <~ Re ~< 3.105, then decreases to 0.370 and 0.365 
at Re = 6-105 and 106, respectively. At M = 6.0 the relative bot tom pressure increases from 0.180 to 0.398 
with Re. In the Re range under review for M = 6.0, the turbulent character of the flow does not influence 
significantly the flow in the region containing the recirculation zone. A further increase of Re requires a 
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considerable increase in the number of calculation mesh nodes and, as a consequence, an considerable increase 
in the computer resources. 

Figure 4 shows the velocity distribution v/voo along the symmetry axis at M = 2.8. It is evident that 
when Re exceeds a certain value not only does the extent of the separation zone decrease abruptly, but the flow 
pattern in it also changes. Actually, for Re = 6-10 s the flow in the recirculation zone is distinguished by the fact 
that the highest velocities occur in the vicinity of the attachment point, and in a certain (rather appreciable) 
vicinity of the bot tom section the motion is very slow (for such regimes the flow region immediately behind 
the bot tom section should be called a "stagnation zone"). The maximum Mach number on the symmetry axis 
in the separation zone (at M = 2.8) increases from 0.345 to 0.753 with an increase in Re of from 2.5.103 to 
3-105 and decreases to 0.239 at Re = 6-10 S. 

Higher velocities in the return flow (to the point of appearance of a local supersonic zone) are obtained in 
calculating the flow around a blunt axisymmetric body under the assumption of flow laminarity [5]. Supersonic 
velocities in the recirculation zone have been observed by other authors (for example, in calculating the plane 
flow behind a cylinder [7]). The calculations made in this work agree with the assumption proposed in [5] that 
the appearance of local supersonic zones in the return flow behind the body is most likely for flow regimes 
with a maximum separation-zone length, i.e., when the turbulent flow character has not yet manifested itself 
as the attachment point of the flow approaches the bot tom section. 

The direction of the velocity near the corner point for M = 2.8 is shown in Fig. 5. The appearance of a 
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pair of small-scale vortices rotating in opposite directions in the vicinity of the separation point at the vertical 
edge of the plate is observed in the present calculations as Re increases, as in the calculations described 
in [5]. However, these small-scale vortices disappear again when Re reaches 6 . 1 0  s. The existence and later 
disappearance of small-scale vortices with an increase in Re occurs also at M = 4.0. The point of separation 
of the main flow at the vertical edge with an increase in Re monotonically approaches the conner point, and 
then slightly recedes from it (Fig. 6). 

The position of the separation point was determined by alternating the sign of the friction coefficient 
cfb = (2#/Re) Ou,-/On, whose distribution along the plate base for M = 2.8 is shown in Fig. 7. A positive 
value of the coefficient corresponds to motion of a gas away from the symmetry axis. A negative value of the 
coefficient in the section between the corner point and the separation point is not shown, in view of the zone 
smallness. Curves in Fig. 7 for Re = 6.105 and 106 are drawn in a scale magnified by 100 with respect to the 
other curves, which is due to very slow (as mentioned before) gas motion along the plate base for such values 
of Re. 

Profiles of turbulent viscosity #t are presented in Fig. 8 in several cross-sections at M = 2.8. For 
Re = 3-10 5 one of two solutions is presented that is relevant to the "laminar" regime with a long separation 
wave, and for Re = 6.10 5 a single solution is presented, which corresponds to the "turbulent" flow regime. As 
is seen, an essentially different flow pattern in the near wake is caused by the rather insignificant difference 
between the profiles at the inlet section. Figure 8 shows that after a certain laminarization of the flow when 

94 



separating from the plate, it is turbulized again ctownstream at tiae wake throat in joining a symme;ricai now. 
Probably, the degree of flow turbulization at the wake throat at Re = 6.105 exceeds the critical value at which 
it intensifies the effect on the separation zone, which first results in its slight reduction, increases the flow 
return to the axis, makes it even more turbulent,  etc. 

In conclusion we would like to note that  the existence of two stationary flow regimes in a certain range 
of governing parameters corresponding to different regimes of change of the Reynolds number (the increase in 
Re from small to great values and the decrease in Re from great to small values is a phenomenon of "hysteresis" 
with respect to the Reynolds number,  like "deceleration" of the transition from laminar to turbulent flow) is 
probably of a physical character and should not depend significantly on the selection of a turbulence model. 

This work was supported by the Russian Foundation for Fundamental  Research (Grant 93-013-16362). 
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